Pathways of climate resilience over the 21st century

To cite this article: Carl-Friedrich Schleussner et al 2021 Environ. Res. Lett. 16 054058

View the article online for updates and enhancements.

You may also like

- Climate Change Adaptation and Disaster Risk Reduction in Urban Development Plans for Resilient Cities
 W N M M Rani, K H Kamarudin, K A Razak et al.

- A Study on the Idea of Resilient City and Its Application in Planning and Practice in China
 Weichao Gao

- The Development Strategy of New Urbanization Based on Resilient City Theory
 Jing Liang, Yajing Liu, Lingyong Ma et al.
Pathways of climate resilience over the 21st century

Carl-Friedrich Schleussner1,2,*, Peter Pfleiderer2,*, Marina Andrijevic1,2,*, Martha M Vogel3, Friederike E L Otto3,* and Sonia I Seneviratne3

1 Climate Analytics, Berlin, Germany
2 Integrative Research Institute on Transformations of Human-Environment Systems (IRI THESys) and Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany
3 Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
4 Environmental Change Institute, University of Oxford, Oxford, United Kingdom

* Author to whom any correspondence should be addressed.

E-mail: carl.schleussner@climateanalytics.org

Keywords: climate change, climate resilient development pathways, adaptive capacity

Abstract

The impacts of climate change are affecting human societies today. In parallel, socio-economic development has increased the capacity of countries around the global to adapt to those impacts although substantial challenges remain. Ongoing climate change will continue to result in a pressure to adapt, while socio-economic development could make it easier to do so. Countries’ effectiveness in fostering climate resilience will depend on the pace of both developments under different socio-economic and emission pathways. Here we assess trajectories of adaptation readiness in comparison with the continued emergence of hot days as a proxy for climate change hazards for different emission and socio-economic pathways over the 21st century. Putting the future evolution of both indices in relation to the observed dynamics over the recent past allows us to provide an assessment of the prospects of future climate resilience building beyond what has been experienced to date. We show that only an inclusive and sustainable stringent mitigation pathway allows for effective climate resilient development over the 21st century. Less inclusive or fossil-fuel driven development will not allow for improvements in resilience building beyond the recent past. Substantial differences emerge already in the 2020s. Our findings underscore the paramount importance of achieving the Paris Agreement goals to enable climate-resilient, sustainable development.

1. Introduction

Climate change hazards are emerging against a background of natural variability across the world (IPCC 2018). Substantial progress has been made in the detection and attribution of the human-induced climate change signal in a range of sectors and for individual extreme weather events (Stott et al 2016, Vogel et al 2019). Going forward, the detection challenge extends to the assessment of avoided climate impacts by mitigation action i.e. between a Paris Agreement compatible and a non-mitigation scenario. Regional and sector-specific differences in climate hazards are well established for warming increments of around 0.5 °C (Schleussner et al 2016b, 2017, Seneviratne et al 2018). Substantial regional benefits in avoided climate extremes may emerge within less than 20 years after the onset of mitigation action (Ciavarella et al 2017, Li et al 2019).

In the face of increasing climate hazards, fostering climate resilience is a central objective of climate policy established in Article 2.1b of the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change (UNFCCC 2015).

The Special Report on Global Warming of 1.5 °C (SR1.5) of the Intergovernmental Panel on Climate Change (IPCC) defines climate resilience as ‘the capacity of social, economic and environmental systems to cope with a hazardous event or trend, […] while also maintaining the capacity for adaptation, learning and transformation’ (IPCC 2018). It goes further to introduce a temporal evolution in fostering climate resilience through the concept of
‘climate-resilient development pathways’ as ‘trajectories that strengthen sustainable development at multiple scales [...]’ while reducing the threat of climate change through ambitious mitigation, adaptation and climate resilience’. Identifying characteristics of climate-resilient development pathways thus calls for an integrated assessment of the mitigation and adaptation dimension. The framework of coupling Representative Concentration Pathways (RCPs), which set mitigation targets, and Shared-Socioeconomic Pathways (SSPs) that provide the socio-economic development context for adaptation, can deliver such integration towards assessing climate-resilient development pathways.

Measuring progress under climate-resilient development pathways requires establishing a reference level. The highly context-specific and multi-dimensional nature of climate resilience (Tanner 2015), however, needs to be considered when trying to determine such benchmarks. Establishing globally applicable definitions of what constitutes ‘high’ climate resilience would thus certainly be challenging if not impossible. Here, we attempt to circumvent this issue by focusing on climate resilience building (De Souza et al 2015)—the temporal evolution of resilience-relevant mitigation and adaptation dimensions. We conceptualize the mitigation pathway dependent emergence of climate change related hazards as an ‘adaptation pressure’ that needs to be counteracted by improved capacity in adaptation and socio-economic development in order to build climate resilience.

While the focus on the temporal evolution of climate resilience building rather than absolute levels helps to bypass some definitional and conceptual challenges, the question of benchmarking progress remains. We thus propose to assess the effectiveness of building climate resilience over the 21st century against the experience over the recent past. Without prejudging whether or not resilience building over the observational period has been efficient or successful, assessing the future evolution against experienced narratives of different SSPs have been provided in the quantified SSP framework. To illustrate changes depending on different initial states, the impacts of climate change on economic performance are already apparent in many parts of the globe and contribute to widening inequality in wealth distribution between countries (Diffenbaugh and Burke 2019).

We assess climate resilience building by comparing the dynamics of a proxy for the adaptation dimension linked to the SSPs compared with the continuous emergence of extreme hot days under different RCPs.

2. Methods

2.1. Scenario-dependent adaptation readiness

Assessing climate resilience is challenging given the systemic nature of climate change impacts. This section describes the adaptation readiness index (RDY) as a metric for assessing the ability of countries to adapt to climate change. The index is defined as the arithmetic mean of its nine constituent indicators, all scaled from their raw values to the range from 0 to 1 and weighted equally.

The RDY index was projected in line with the trajectory of different SSPs from 1996 to 2015 (mean year 2005). The classification in ‘low’, ‘medium’, ‘high’, ‘very high’ follows quartiles of the mean 2005 distribution of countries. See figure 1(a) and table S2 (available online at stacks.iop.org/ERL/16/054058/mmedia) for an overview of the categorization.
The rate of change of adaptation readiness $RDY_{yr,i}$ for a given year yr and country i is derived as the running mean of changes in adaptation readiness over a 21 year period centered on year yr.

Figure 1(a) depicts the RDY globally over the 1995–2015 period outlining substantial differences between countries. Over the last two decades, RDY has been improving for many countries, but not for all (compare figure 1(c)). Over the observational period, improvements in RDY have been generally higher for countries with higher RDY (figure 2(a), see section 2 for more information on the classification of countries). A notable exception are countries with very high RDY today, where comparably small improvements are observed. For countries in that category, however, the very high levels of RDY indicate limited need for improvements of adaptation readiness.

Countries with very low RDY to date are arguably those that would most urgently need to see improvements. However, at least over the observational period these countries exhibit the smallest median improvements with a significant number of countries also seeing decreasing adaptation readiness.

2.2. Emergence of extreme heat

Potential improvements in adaptation readiness will be met by an ongoing emergence of the climate change signal (Geiges et al 2020). To approximate this ongoing emergence, we focus on one specific heat-related indicator: the number of hot days (NHDs) (Vogel et al 2020). A multitude of climate hazards exist with strong regional differences and one heat-related index clearly does not provide for a comprehensive overview of all risks of climate change (Hoegh-Guldberg et al 2018). We however chose this index for two reasons specifically linked to the purpose of this study. Firstly, extreme heat is one of the most pertinent climate hazards (Counou and Robinson 2013, Pfeifer et al 2019) that is emerging globally, which makes it suitable for a cross-country comparison. Secondly, extreme heat indices have been shown to be highly sensitive to global warming, allowing for robust assessment of an emerging climate change footprint on decadal timescales (Pfeifer et al 2018, Seneviratne et al 2018). While not being fully representative of the broad spectrum of climate impacts, heat extremes are driving a range of pertinent climate impacts including health risks (Saeed et al 2020) and labour productivity (Andrews et al 2018), crop failure (Schuberger et al 2017), and conflict risk and migration (Hoffmann et al 2020).

To derive the NHDs, we analyze the near-surface air temperature (tas) over land regions. We first compute the 90th percentile temperature distribution of each day based on the 31 neighboring days and 21 neighboring years. We then focus in the analysis on the ‘warmest season’ defined as having the three consecutive warmest months in the climatology (1970–2000). A hot day is then defined as a day that exceeds the 90th percentile temperature distribution within these warmest months of a 21 year moving reference period. The center year of the moving 21 year 90th percentile temperature distribution refers to the 20 years earlier than the year of interest, thus the 21 year baseline period is shifted to the respective 20 previous years. This shifting reference period serves as a proxy for continuous adaptation to the new climatic conditions.

Hence, for 2005 the reference 90th percentile temperature distribution refers to 1975–1995, for 2085 to the 2055–2075 reference period (see figure S1). NHD is computed as the sum of the
hot days for each individual year for each model simulation on the grid cell level. We then aggregate
to country level, derive the running mean with a 21 year window and derive median and ensemble spread over the model ensemble. We use simulations from the Coupled Model Intercomparison Project
ensemble member is used per model, the available simulations depend on the emission scenario, where
the complete list of models is provided in the supplementary information table S1.

For the recent reference period (1995–2015) we compare simulated NHD with observed NHD, i.e.
NHD in a combination of the European Centre for Medium-Range Weather Forecasts ReAnalysis
5 (ERA5) and ERA40 (CDS 2019). We compute the mean difference of mean NHD from 1995 to 2015
for the multi-model median of the CMIP5 models for each country and the different emission scenarios
RCP2.6, RCP4.5 and RCP8.5 (see figure S3). Overall, we find that CMIP5 models tend to show a slight neg-
ative bias, hence simulating too little hot days. When we average over the four country groups (low, middle,
high, very high development) the mean biases vary
between 0 and -3 d yr^{-1}. This can be partly related
to strong heatwaves in our reference period such as
the 2010 Russian heatwave or the 2018 Northern
Hemisphere heatwaves, that are not captured in the
climate model simulations in these respective years.
We correct the CMIP5 projections for this bias by sub-
tracting the simulated NHD in 2005 and adding the
observed NHD in 2005 (averaged over 1995–2015)
to all projections for each country and each model
individually.

In a stable climate, the expected NHD emergence
would be on average 9 NHD days per year such as
in the reference period. As shown in figure 1(b), the
emergence of NHD over the 1995–2015 period is not
globally homogeneous and is subject to some natural
variability. It is particularly pronounced over tropical
regions. While this tropical signal is partly the result of the choice of the NHD metric that is assessed against
natural variability which is comparably lower in trop-
ical regions, it also is an illustration of the exposure
of the most vulnerable regions to the early emergence
of climate change impacts (Harrington et al 2016,
Harrington and Otto 2018).

2.3. The climate resilience building coefficient
The relative pace of hot day emergence relative to
a moving reference period can be interpreted as a resemblance of adaptation pressure. Comparing
changes in adaptation readiness with such a proxy for
adaptation pressure can inform how climate resil-
ience is being built over time. Increasing adaptation
readiness will increase countries resilience, but the
effectiveness of doing so will clearly depend on the
temporal evolution of the adaptation pressure.

The climate resilience building coefficient (CRBC) allows to capture this interdependency as:

$$\text{CRBC} (yr, i) = \frac{\text{RDY} (yr, i)}{\text{NHD} (yr, i)}.$$

Note that while the CRBC can be negative (mainly
over the observational record), only the interpretation of positive values is meaningful in terms of a
country intercomparison.

3. Results

3.1. Scenario dependent evolution of adaptive
capacity and heat emergence
In order to assess the future evolution of the
RDY, it needs to be related to narratives of future
socio-economic development. Here we make use of recently provided RDY projections linked to the SSPs (Andrijevic et al. 2020b). The SSPs present a set of quantified scenario narratives of the evolution of societies globally in the 21st century (O’Neill et al. 2017). Figure 2(b) shows the RDY evolution over three distinct SSP scenarios: SSP1, SSP3 and SSP5. SSP1, the ‘sustainability’ scenario, is characterized by fast socio-economic development as a result of investments in education, health, renewable energy sources, and of declining inequalities between and within countries, strong international cooperation, thus limiting impacts and increasing capacity to cope with climate change. SSP3, also termed ‘regional rivalry’, is much the opposite: it is a scenario of stalled socio-economic progress and a growing divergence between economies, weak international cooperation and increase in internal and international conflicts, resulting in low capacity to cope with impacts of climate change. SSP5 is similar to SSP1 in terms of socio-economic development, but assumes it to be largely fossil-fueled, thereby resulting in much larger emissions’ footprint than the SSP1 scenario.

Under the SSP3 scenario, little deviation of RDY from today is projected over the 21st century with limited improvements in particular for the most vulnerable today (figure 2(b), amber). In contrast, the high development assumptions in SSP1 and SSP5 would lead to rapid improvements in adaptation readiness achieved only by a small number of countries over the observational period resulting in similar probability density functions (figure 2(b), blue, purple). The 21 year rate of improvements is highest in the near-term (2025, dashed lines in figure 3(a)) and for the countries with the lowest adaptation readiness to date. Improvements in RDY slow down over the 21st century as developing countries are catching up and global inequalities are reduced (Rao et al. 2019).

These trends in RDY can now be compared with the temporal evolution of climate emergence. By design, our NHD index is sensitive to the emergence of ongoing climate change and can be interpreted as an ‘adaptation pressure’ that requires ongoing adaptation efforts to counterbalance. A significant adaptation potential exists with regard to heat extremes (Klein et al. 2014) and countries at a certain level of development may be very well adapted to its impacts (Carleton et al. 2018). However, rather than assessing the NHD index solely in terms of its implications on extreme heat alone, we here interpret it as a proxy for ongoing emerging climate change and resulting adaptation needs or pressure faced by societies (De Coninck et al. 2018). As shown in figure 3(b) for different RCPs, future evolution of NHD exhibits a clear scenario dependency over the 21st century. Under the very high concentration scenario RCP8.5, NHD emergence will continue to increase with half of the world’s countries experiencing the emergence of about 20 NHDs by mid-century (about twice what would be expected by natural variability alone). A significant number of countries would experience an emergence of more than a month (30 d) of hot days within two decades, well above twice the current rate and outside the observed range. This represents a substantial acceleration from observed trends.
NHD emergence under the RCP4.5 scenario resembles observed trends (yellow lines in figure 3(b)). Under the RCP2.6 scenario that holds the global mean temperature increase to below 2 °C above pre-industrial levels with a 66% probability, a slow-down in NHD is apparent. By mid-century, NHD emergence is robustly below the observed distribution and towards the end of the century, the median experienced NHD falls below 9 d in conjunction with slowly declining temperatures under this scenario (IPCC 2013).

3.2. Building climate resilience

Comparing the temporal evolution of the increases in adaptive capacity, proxied by RDY (figure 3(a)), and hazard pressure, proxied by NHD (figure 3(b)), allows for an assessment of how effective countries may be in building climate resilience under different socio-economic and warming trajectories. We propose a CRBC as the ratio of RDY improvements vs. NHD emergence that allows to capture this interdependency (figure 3(c); see section 2). The CRBC exhibits several characteristics that we consider meaningful when assessing progress made towards climate-resilient development pathways. Firstly, it is sensitive to the ongoing emergence of new climate hazards. Achieving net-zero emissions and thereby a peak in global mean temperature leads to a constant climate hazard component, meaning that every improvement in the adaptation dimension contributes to resilience building. On the other hand, an accelerated emergence in the climate hazard requires bigger improvements in adaptation-enabling conditions to continue to build climate resilience at the same pace.

Comparison with the observed CRBC allows to assess the evolution of this index under different socio-economic and climate futures illustrated by different SSP-RCP combinations (compare figure 3(c)). Firstly, the distributions of different SSP-RCP combinations are narrower than the observed distribution, illustrating the observation of a diverse pace of socio-economic progress across countries, while the SSPs provide for a global narrative leading to a more uniform evolution (compare figure 3(a)). At the same time, the different SSPs taken together resemble well the observed distribution which supports the meaningful comparison. A notable exception is the presence of declining readiness for a significant number of countries over the observational period. Such declines are almost absent from the SSP-based projections (negative values are only projected under SSP3 and only for a few countries). The lack of declining socio-economic trends in the SSP framework has been criticized as inherent scenario optimism (Andrijevic et al 2020b).

Compared to the observed trends, resilience building under the SSP3-RCP4.5 is slowed down, yet well within the observed cross-country variability (yellow lines figure 3(c)). In particular, improvements in countries with lowest adaptation readiness today will almost come to a halt (compare figure 3(g)). In comparison with such a ‘rocky road’, a high fossil fuel development driven narrative exemplified by the SSP5-RCP8.5 would represent some improvements in building climate resilience in the near-term, but with declining efficiency over the 21st century as ongoing emergence of climate change hazards continue to increase adaptation needs. After 2050, resilience building under such a scenario would slow down to present-day levels despite the very optimistic assumptions of rapid socio-economic development. This finding questions the narrative of ‘low adaptation challenges’ assumed under a SSP5 scenario, even without considering limits and barriers to adaptation being transgressed due to ongoing warming (IPCC 2018).

In contrast, under the SSP1-RCP2.6 scenario, resilience building will improve substantially already in the near-term and even accelerate over the 21st century (compare figures 3(d)–(g)). By 2050, almost all countries will build resilience faster than the mean pace over the observational period and about half of the countries will improve at rates above one standard deviation of the observed distribution (compare figure 3(c)). Improvements in resilience building are highest for countries with currently medium or low adaptation readiness (figures 3(f) and (g)), some of which have experienced a deterioration in adaptation readiness over the recent past (compare figure 1(d)).

Figure 4 allows for a direct comparison of the regional resilience building under the different scenarios. Despite development improvements being comparable in the SSP1-RCP2.6 and the SSP5-RCP8.5 scenario, and most pronounced in countries with lower development often located in low latitudes, it is also those countries for which

Figure 4. The climate resilience building coefficient in 2050 under different SSP-RCP scenarios. (a) SSP1-2.6, (b) SSP3-4.5, (c) SSP5-8.5 scenario. Values are shown relative to standard deviations of the observed distribution (compare figure 1(d)). Countries with missing data are hatched grey.
the differences in climate resilience building between both scenarios are most pronounced. This indicates that building climate resilience, in particular for countries that most urgently need to see improvements, critically depends on stringent climate mitigation. Under a 1.5 °C compatible scenario RCP1.9 characterized by the most stringent near-term emission reductions, development benefits would be even higher including in the near term (Nauels et al 2019, McKenna et al 2020).

4. Discussion and conclusions

When interpreting our findings, it is important to be mindful that the analysis presented here does not attempt to provide indications whether countries are climate resilient or not, but rather provides an assessment of potential temporal and scenario-dependent evolution of resilience building.

This forward-looking approach aims to inform assessments of progress towards the goals set out in the Paris Agreement Article 2.1b to ‘foster climate resilience’ and ‘low greenhouse gas emissions development’ (UNFCCC 2015). Our analysis shows that the achievement of both goals is intertwined, as stringent climate mitigation is key for effective resilience building.

We find that even under scenarios of unprecedented global socio-economic development (SSP5), the impacts of unmitigated climate change cannot be ‘outgrown’. Furthermore, our results highlight the potential for very-near term benefits of inclusive climate resilient development pathways (RCP2.6-SSP1) as soon as 2025 (compare figure 3(c), dashed blue line). While initially strongly driven by socio-economic change, our findings equally illustrate the very near-term benefits of mitigation slowing down near-term warming (McKenna et al 2020).

In order to provide this integrated assessment of climate resilience building, a range of strong assumptions and heuristic choices had to be made. First and foremost, our assessment of climate resilience building is based on the linear comparison between adaptation readiness and a hazard pressure proxied by the continuous emergence of NHDs. For both the climate and the adaptation readiness dimension, however, non-linearities may be present. The adaptation readiness score applied here has been developed to assess the enabling conditions for adaptation that might not directly translate into countries’ abilities to deal with the impacts of climate change in a linear fashion. An improvement of 0.1 points in RDY might have very different real-world consequences depending on the state of development. On the other hand, a single heat-related index is of course not able to cover the full range of climate impacts. However, systematic assessments of future climate risks indicate rapidly escalating risks at 1.5 °C of temperature increase above pre-industrial levels and beyond (Hoegh-Guldberg et al 2018, Lange et al 2020). The emerging NHD does not account for non-linearly increasing risks of climate change (IPCC 2018) with increasing warming, or the crossing of absolute thresholds for ecosystems, agricultural productivity or even human habitability (Im et al 2017, Schaubberger et al 2017). With ongoing warming, also adaptation limits may increasingly be reached or exceeded (Thomas et al 2020). An emerging heat-related index therefore appears to be a rather conservative choice for a proxy for climate impacts.

Furthermore, under the SSP framework there is no feedback of climate impacts on the development trajectory. Accounting for climate impacts the development trajectories may give rise to increasing inequalities between countries with increasing warming (Taconet et al 2020). Similarly, adaptation readiness is projected to marginally improve (or at least not deteriorate) for the vast majority of countries even under an SSP3 scenario largely linked to improvements in future governance under the SSPs (Andrijevic et al 2020b). The same holds for other adaptation relevant indicators such as (gender) inequality (Rao et al 2019, Andrijevic et al 2020a).

Over the observed record, however, several countries have experienced a decline in adaptation readiness, many of which have been affected by outbreaks of armed conflicts or civil unrest (compare figure 1(c)). Unfortunately, it seems plausible that conflict outbreaks will continue to occur in the future and that outbreak risks may even increase depending on the climate and socio-economic scenario (Hegre et al 2016, Schleussner et al 2016a, Ide et al 2020).

These considerations need to be kept in mind when interpreting our results. However, they rather render our assessment conservative and thus support our key finding that stringent climate mitigation is key for efficient climate resilience building. As illustrated in figure 4, our approach allows to provide guidance on the determinants of efficient climate resilience building down to the level of country groups or even individual countries compared to what they have experienced already. Without prejudging whether or not recent progress can be deemed ‘good’ or ‘sufficient’, it can be assessed if the challenge of building climate resilience is increasing or decreasing depending on the socio-economic and climate pathway. While socio-economic development is, at least partly, also linked to decision making and progress on the national level, the emergence of a climate hazard is the result of global emissions, largely driven by a small number of big emitters (Geiges et al 2020). Whether or not the world’s most vulnerable nations will succeed in building climate resilience is thus partly out of their own hands and becomes a global responsibility. This is now even more the case with countries are dealing with the social and economic consequences of the COVID-19 pandemic, while national stimulus packages of..
developed countries exceed the required investments into a green transition by an order of magnitude or more (Andrijevic et al 2020c). While the COVID-19 related economic downturn has neither helped the climate nor climate resilience, a strong green stimulus could set the world on track for limiting warming to 1.5 °C (Forster et al 2020). Climate resilient development pathways need to be aligned with achieving the temperature goal of the Paris Agreement.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Acknowledgments

We acknowledge the modelling groups, the Program for Climate Model Diagnosis and Intercomparison, and the WCRP’s Working Group on Coupled Modelling for their roles in making available the CMIP multi-model datasets, which can be accessed through http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html. Support for this dataset is provided by the Office of Science, US Department of Energy. P P, M A and C-F S acknowledge support by the German Federal Ministry of Education and Research (01LN1711A). C-F S further acknowledges support by European Union’s Horizon 2020 Research and Innovation Programme under Grant No. 820829 (CONSTRAIN).

S I S and M M V acknowledge partial support by the European Research Council (ERC) ‘DROUGHT-HEAT’ project funded by the European Community’s Seventh Framework Programme (Grant Agreement FP7-IDEAS-ERC-617518).

Author contributions

CFS, MA, PP, FELO and SIS designed the research; PP, MA, MMV and CFS performed the analysis; CFS wrote the paper with contributions by all co-authors.

ORCID iDs

Carl-Friedrich Schleussner https://orcid.org/0000-0001-8471-848X
Peter Pfleiderer https://orcid.org/0000-0002-1493-4598
Marina Andrijevic https://orcid.org/0000-0003-0199-1988
Martha M Vogel https://orcid.org/0000-0001-9509-7332
Friederike E L Otto https://orcid.org/0000-0001-8166-5917
Sonia I Seneviratne https://orcid.org/0000-0001-9528-2917

References

Andrijevic M, Crespo Cuaresma J, Mustarar R and Schleussner C F 2020b Governance in socioeconomic pathways and its role for future adaptive capacity Nat. Sustain. 3 35–41
Byers E et al 2018 Global exposure and vulnerability to multi-sector development and climate change hotspots Environ. Res. Lett. 13 055012
Coumou D and Robinson A 2013 Historic and future increase in the global land area affected by monthly heat extremes Environ. Res. Lett. 8 034018
De Coninck H et al 2018 Strengthening and implementing the global response Global Warming of 1.5 °C: An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change (available at: www.ipcc.ch/site/assets/uploads/sites/2/2018/08/SR15_Chapter4_High_Res.pdf)
Diffenbaugh N S and Burke M 2019 Global warming has increased global economic inequality Proc. Natl Acad. Sci. 116 201816020
Harrington L J and Otto F E L 2018 Changing population dynamics and uneven temperature emergence combine to exacerbate regional exposure to heat extremes under 1.5 °C and 2 °C of warming Environ. Res. Lett. 13 34011

Im E S, Pal J S and Eltahir E A B 2017 Deadly heat waves projected in the densely populated agricultural regions of South Asia Sci. Adv. 3 e1603322

Lange S et al 2020 Projecting exposure to extreme climate impact events across six event categories and three spatial scales Earth’s Future e2020EF001616

Peisker J, Schleussner C F, Mengel M and Rogelj J 2018 Global mean temperature indicators linked to warming levels avoiding climate risks Environ. Res. Lett. 13 044015

Saeed F, Schleussner C-F and Almazroui M 2020 From Paris to Makkah: heat stress risks for Muslim pilgrims at 1.5 °C and 2 °C Environ. Res. Lett. 51 404001

Schauberger B et al 2017 Consistent negative response of US crops to high temperatures in observations and crop models Nat. Commun. 8 13931

Schleussner C F et al 2016b Differential climate impacts for policy relevant limits to global warming: the case of 1.5 °C and 2 °C Earth Syst. Dyn. 7 327–51

Schleussner C F et al 2018 1.5 °C hotspots: climate hazards, vulnerabilities, and impacts Annu. Rev. Environ. Resour. 43 135–63

Schleussner C-F, Peisker J and Fischer E M 2017 In the observational record half a degree matters Nat. Clim. Change 7 460–2

Schleussner C, Donges J F, Donner R V and Joachim H 2016a Armed-conflict risks enhanced by climate-related disasters in ethnically fractionalized countries 113 9216–21

Seneviratne S I et al 2018 Climate extremes, land-climate feedbacks and land-use forcing at 1.5 °C Phil. Trans. R. Soc. A 376 20160450

Tanner T 2015 Livelihood resilience in the face of climate change Nat. Clim. Change 5 23–6

